
Solutions for Go Figure 2002

1. 977.5. 15% of 1000 is 1000 × .15 = 150, so B = 1150. C is 85% of B. 1150 × .85 = 977.5.
Notice that this does not take us back to where we began at 1000. 15% of 1000 is less than
15% of 1150, so we will subtract more in the second step than we add in the first.

2. 28%. There are .3 × 600 = 180 pennies in the jar and .2 × 150 = 30 pennies in the coffee
can. Once the two groups of coins are combined, there are 180 + 30 = 210 pennies and
600+150 = 750 total coins. Therefore the fraction of pennies is 210

750
= .28. This is 28

100
or 28%.

Note that the final percentage of pennies in the bucket is not the arithmetic mean (average) of
the original percentages. This is because there were more total coins in the jar and therefore
it more greatly effected the final percentage of coins.

3. 12
13

, 84
97

, 7
9
, 42

55
, 21

31
. There are many ways to solve this problem. You can cross multiply each pair of

fractions (10 comparisons) to put all in order. You can guess an order, for example, by guessing
that 12

13
> 21

31
, since the second fraction is probably close to 2

3
, and then use cross multiplication

among the adjacent pairs to check the order. This would only be four comparisons if you are
a good guesser. Alternatively, you can find a common denominator. However, in this case,
the easiest strategy is to find a common numerator. Choosing a least common numerator of
84, and maintaining the original order, the five fractions, become: 84

108
, 84

91
, 84

124
, 84

110
, 84

97
. When

numerators are all equal, the largest fraction has the smallest denominator. Putting the
fractions in order from smallest to largest denominator gives the stated ordering.

4. (a) 309. In this progression, the terms are 3 × 1, 3 × 2, 3 × 3, 3 × 4 . . . The 103rd term is
3× 103 = 309.

(b) 88. The sequence is an arithmetic progression with a fixed difference of 5. If this
sequence had begun with 5, we would only have to divide the final term by 5 to find
the number of terms. But we can compare sequences with the same fixed difference and
length. Therefore, the sequence 5, 10, 15, 20 . . . , 440 (where each term is 1 less that the
corresponding term in our sequence) has the the same number of terms as our sequence.
So the number of terms is 440/5 = 88.

A “classic” method to determine the number of sequence elements between a start value
and an end value is to compute the span of the sequence (difference between the first
and last term): 441 − 6 = 435. Dividing by the difference between successive terms (in
this case 5) gives us the number of terms after the first one: 435/5 = 87 terms after the
first one. We must then add one for the first term, so there are 88 in total. You should
use this method with caution since it is easy to forget to add one for the first term.

(c) 6 + 441 = 447.

(d) 11 + 436 = 447.

(e) 19668. If one continues the pattern shown in parts c and d, adding the terms of the
sequence in pairs moving forward from the beginning and backward from the end (i.e.
pairing terms i from the beginning and i from the end), always gives a sum of 447. This
is because the increase in the earlier term (5) is exactly the decrease in the later term.
There are 88/2 = 44 such pairs, since there are 88 terms in the sequence. Therefore the
sum of all the terms is 44× 447 = 19668.
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5. A = 2, B = 1, C = 7. We observe that 5A4 is greater than 500, so if B is at least 2, then BCC
is at least 200 and the product would be at least 100, 000. Since our product has only five
digits, we know that B is less than 2. If B were 0, then BCC would be less than 100. Since
5A4 is less than 600, the product would be at most 60000 which is too small (the product
is greater than 90000). Therefore B = 1. Now consider the units digit of the product. This
is the units digit of the product 4 × C. There are only two single-digit numbers that when
multiplied by 4 have a units digit of 8. They are 2 and 7. If C = 2, then the product is no
more than 600 × 122 = 73200. This is too small, so C = 7. At this point, there are at most
four choices remaining for A, and we could try them all. However, we can also determine the
value of A more directly by considering the tens digit of the product. The product may be
expressed as (4 × 177) + (A × 10 × 177) + (5 × 100 × 177). The first term 4 × 177 = 708, so
it contributes nothing to the tens digit of the product. The last term, because it’s multiplied
by 100, also contributes nothing to the tens digit of the product. Therefore, the tens digit
of the product is the units digit of A × 7. There is only one product of a single digit times
7 with a units digit of 4, namely 2 (7 × 2 = 14). Therefore A = 2. Doing a final check
524× 177 = 92748.

6. (a) One possible solution is 1..10. As long as the interval of size 10 starts with a number
that has a remainder of 1, 2, 3 or 4 when divided by 7, then the interval will have only
one number divisible by 7.

(b) One possible solution is 5..14. As long as the interval starts with a number that is
divisible by 7, or has a remainder of 5 or 6, then there will be two numbers divisible by
7 in an interval of size 10.

(c) 432. 2028 has a remainder of 5 when divided by 7. Therefore the first number in the
interval that is divisible by 7 is 2030 (a number two greater will have a remainder of zero
when divided by 7). 5048 has a remainder of 1 when divided by 7, so the last number in
the interval that is divisible by 7 is 5047. The numbers in the interval that are divisible
by 7 now form an arithmetic progression 2030, 2037, . . . , 5047. We can determine the
number of terms in this progression by either of the methods described in problem 4.
For example, using the span method, the difference between the first and last elements
is 5047− 2030 = 3017. 3017/7 = 431 is the number of terms after the first. Adding one
for the first term yields a total of 432 terms, numbers divisible by 7 in the interval. One
doesn’t have to think directly in terms of arithmetic progressions to solve this problem.
Once you have determined the first and last terms divisible by 7, you can observe that
every 7th term is divisibly by 7 and compute the number using the span method, for
example.

7. (a) 243 = 35 with a 3-score of 5. No other number in this interval is divisible by 243.

(b) 3. There are three numbers in the interval divisible by 34 = 81. They are 81, 162, and
243. The interval 1..243 has 243 = 3× 81 terms, so there are three elements divisible by
81, and there are no additional terms divisible by 81 in the interval 244..250.

(c) 123. We count the total 3-score by counting all the numbers with 3-score 5, all the
numbers with 3-score at least 4, all the numbers with 3-score at least 3, and so on. A
number with 3-score k will be counted k times as it should be. We start by counting
only the interval 1..243. There is one number with 3-score 5, and 3 numbers with 3-score
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at least 4. Using the same argument as we used in part (b), there are 3× 3 = 9 numbers
with 3-score at least 3 (three between each consecutive pair of numbers with 3-score at
least 4), there are 9× 3 = 27 numbers with 3-score at least 2, and there are 27× 3 = 81
numbers with a 3-score at least 1. Thus there is a total 3-score of 1+3+9+27+81 = 121
in the interval 1..243. In the interval 244..250, there are only two numbers divisible by
3, namely 246 and 249 and neither of these is divisible by 9. Therefore this end interval
contributes 2 to the total 3-score, giving a total 3-score of 121 + 2 = 123.

(d) 123. The interval 244..493. Is the interval 1..250 moved up by 243. We have to determine
the 3-score of a number of the form 35 +x for an x in the interval 1..250. Notice that 493
is not big enough to have a 3-score of 6 (36 = 729). The number 35 + x is divisible by 3
if and only if x is divisible by 3. The same argument holds for 9, 27, 81, and 243. That
is, the 3-score of 35 + x is exactly the 3-score of x as long as x is small enough that the
resulting number 35 + x cannot have a 3-score of 6. Therefore the sum of the 3-scores
of the interval 244..493 is exactly the sum of the 3-scores of interval 1..250 computed in
part c.

8. (a) 6. We must decide the number of twos in the multiset. Once we have chosen the number
of twos, then we are forced to pick exactly enough ones to create a sum of 10. Since
10 = 2× 5, we can pick anywhere from 0 to 5 twos for a total of 6 choices.

(b) 12. Once we decide how many sixes to place in the multiset (zero, one, or two), then
we are left with a problem similar to part (a), namely, how many ways to use {1, 2} to
create a total sum (with the sixes) of 12. If we use 2 sixes, then there is 0 left to be
filled out with ones and twos. Therefore there is 1 such set. If we choose one six, then
we must choose a multiset with sum 12− 6 = 6 from the remaining base of {1, 2}. Using
an argument similar to part (a), we see there are 4 ways to do this (choose 0, 1, 2, or 3
twos). Finally if we choose no sixes, then there are 7 ways to get a sum of 12 using ones
and twos. Therefore the total number of sets is 1 + 4 + 7 = 12.

(c) 1499500. 5994 = 6× 999, so there are 1000 choices for the number of sixes starting with
999, decreasing to 0, each with an increasing number of ways to fill out the difference
with ones and twos. The pattern shown in part (b) continues. Each time we decrease
the number of sixes by one, we have 3 more choices for filling out the balance. Therefore,
we much compute the sum of the arithmetic progression 1, 4, 7, . . . , 2998. We can sum
using the methods described in problem 4. The sum of the first and last term is 2999.
We can create 500 such pairs by choosing the smallest and largest remaining numbers
iteratively. Therefore the sum 1 + 4 + 7 + . . . + 2998 = 2999× 500 = 1499500.

9. (a) 8. For each of the three flower types, we must choose whether to plant it or not (2
options). These are independent choices (all can be combined), so there are 2× 2× 2 =
23 = 8 types of gardens.

(b) 32. This is the same as the previous question except that we now must make 5 indepen-
dent choices, each with 2 options. So the number of different gardens is 25 = 32.

(c) 11. From part (a), there are 8 gardens that add only flowers (or nothing). By a similar
argument, there are 2 × 2 = 4 gardens that add only herbs or nothing. Doing nothing
was an option for both the flower garden and the herb garden, but otherwise, the choices
are disjoint (nothing else shared). Therefore there are 8 + 4 − 1 = 11 possible types of
garden that do not mix flowers and herbs.
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(d) 10. We must choose 3 out of the 5 possibilities. There are a number of ways to solve
this problem. It is small enough to enumerate the choices. In this case, it is easier to
enumerate the ways to pick the two seed types you do not want to plant. To calculate this
quantity, you begin by picking the first seed to discard. There are 5 choices. Once you’ve
picked that, pick one of the 4 remaining (there are 4 choices). This gives 5 × 4 = 20.
However, the order of the eliminations doesn’t matter: you get the same garden if you
throw out oregano, then cilantro that you’d get if you through out cilantro then oregano).
Since we counted each option twice, we divide by 2 to correct, giving a total of 20/2 = 10.

This general procedure is captured in the “choose” notation. The symbol

(
n
k

)
, read

“n choose k”, stands for the number of distinct subsets with exactly k elements that can

be chosen from a set of n elements. By definition

(
n
0

)
= 1 =

(
n
n

)
. In general

(
n
k

)
=

n(n− 1)(n− 2) . . . (n− r + 1)

1 · 2 · 3 . . . k
for any r = 1, 2, . . . , n− 1.]

The numerator represents the ordered choice of the k elements. But there are k! ways
to order within the set of size k. We divide by this number to correct the overcount.

10. and 11. 499. A number with k trailing zeros can be written as n×10k, for some integer n that
is not divisible by 10. Consider the prime factorization of 2002!. This is just the product of
the prime factorizations of every number from 1 to 2002. For any positive integer n > 1, the
exponent of 5 in n! is smaller than the exponent for 2 in n!. This is because more numbers
between 1 and n are divisible by 2 than by 5, more are divisible by 22 = 4 than by 52 = 25,
and so on. The prime factorization of 10 is 5 × 2. Because there are plenty of 2’s to match
any 5 in the prime factorization of 2002!, the number of trailing zeros is exactly the exponent
of 5 in its prime factorization. This is the number of times 5 appears as a (repeated) factor in
the interval 1..2002. Define the 5-score of a number the way we defined 3-score in problem 7
(the exponent of 5 in the prime factorization of that number). Then the number of trailing
zeros is the sum of the 5-score of the numbers in the interval 1..2002. We can compute this
using the same techniques used in problem 7.

Since 54 = 625 and 55 = 3125, the highest 5-score in the interval is 4. We begin by computing
the sum of the 5-scores in the interval 1..625. There is one number with 5-score 4, 5 numbers
with 5-score at least 3, 25 numbers with 5-score at least 2 and 125 with 5-score at least 1.
Thus the sum of the 5-score in 1..625 is 1 + 5 + 25 + 125 = 156. By an argument similar to
that in problem 7(d), the sum of the 5-scores in 626..1250 and 1251..1875 are the same, so
the sum of the 5-scores in 1..1875 is 3 × 156 = 468. Again, the same argument shows that
the sum of the 5-scores in 1876..2002 is the same as the sum of the 5-scores in 1..127. This is
1 + 5 + 25 = 31, since 125 has the highest 5-score (of 3). Thus the total sum in the interval
1..2002 is 468 + 31 = 499.

12. 2x. Throughout this solution, we will use a segment name (such as AC) to refer to the
segments length. Because it is a side of the square, AC = 1. Since AB is half the side
of the square, AB = 1

2
. Because trangle ECB is the reflection of triangle ABC, we have

EC = AC = 1 and EB = AB = 1
2
. Triangle CDE (labeled triangle 1 in the figure) is similar

to triangle BEF (labeled triangle 2). They are both right triangles, since angles CDE and
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BFE are right angles. Angle FEB is complementary to angle DEC (they sum to 90 degrees),
since angle CEB is a right angle and the three add to a straight line (180 degrees). However,
angle DEC is also complementary to angle DCE, since they are the non-right angle in a right
triangle. Therefore, angle DCE is the same as angle FEB. Thus right triangles CDE and
BFE are similar, with the former twice as large. Side BF corresponds to side DE, so DE is
twice as large.

There are other valid expressions for the length of DE as a function of x. Any expression
is acceptable as long as that expression evaluates to .6 when x = .3. For example, by the
Pythagorean Theorem on right triangle EFB, we know that EF 2 + x2 = (1

2
)2. Solving for

EF , we have EF =
√

1
4
− x2. Since DE+EF = 1, we have DE = 1−

√
1
4
− x2. Similarly, one

could observe that CJ = 1
2

and DJ = x. Using the Pythagorean Theorem on right triangle

DEC, we have DE2 + (x + 1
2
)2 = 1. Therefore DE =

√
1− (x + 1

2
)2. It’s still possible to

compute the value of x in the next problem using these expressions, but the algebra becomes
significantly more complicated.

13. 3
10

. Let y be the length of EF. From the Pythagorean theorem on triangle BEF , we have
x2+y2 = 1

4
. Because DE = 2x and DF = 1 (the same as the square side), we have 2x+y = 1.

Solving for y in the second equation, we have y = 1− 2x. Substituting into the first equation
and simplifying:

x2 + (1− 2x)2 =
1

4
(1)

x2 + 1− 4x + 4x2 =
1

4
(2)

5x2 − 4x +
3

4
= 0 (3)

20x2 − 16x + 3 = 0 (4)

(10x− 3)(2x− 1) = 0 (5)

We cannot have x = 1
2
, since that is the length of the hypotenuse of triangle BEF . This

would imply y = 0, which, given the figure, we assume is not true. Therefore x = 3
10

. Note
that it may have been easier to use the quadratic formula rather than factoring in step 5.
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